Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Data-driven modeling of COVID-19-Lessons learned.

Identifieur interne : 000645 ( Main/Exploration ); précédent : 000644; suivant : 000646

Data-driven modeling of COVID-19-Lessons learned.

Auteurs : Ellen Kuhl [États-Unis]

Source :

RBID : pubmed:32837980

Abstract

Understanding the outbreak dynamics of COVID-19 through the lens of mathematical models is an elusive but significant goal. Within only half a year, the COVID-19 pandemic has resulted in more than 19 million reported cases across 188 countries with more than 700,000 deaths worldwide. Unlike any other disease in history, COVID-19 has generated an unprecedented volume of data, well documented, continuously updated, and broadly available to the general public. Yet, the precise role of mathematical modeling in providing quantitative insight into the COVID-19 pandemic remains a topic of ongoing debate. Here we discuss the lessons learned from six month of modeling COVID-19. We highlight the early success of classical models for infectious diseases and show why these models fail to predict the current outbreak dynamics of COVID-19. We illustrate how data-driven modeling can integrate classical epidemiology modeling and machine learning to infer critical disease parameters-in real time-from reported case data to make informed predictions and guide political decision making. We critically discuss questions that these models can and cannot answer and showcase controversial decisions around the early outbreak dynamics, outbreak control, and exit strategies. We anticipate that this summary will stimulate discussion within the modeling community and help provide guidelines for robust mathematical models to understand and manage the COVID-19 pandemic. EML webinar speakers, videos, and overviews are updated at https://imechanica.org/node/24098.

DOI: 10.1016/j.eml.2020.100921
PubMed: 32837980
PubMed Central: PMC7427559


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Data-driven modeling of COVID-19-Lessons learned.</title>
<author>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32837980</idno>
<idno type="pmid">32837980</idno>
<idno type="doi">10.1016/j.eml.2020.100921</idno>
<idno type="pmc">PMC7427559</idno>
<idno type="wicri:Area/Main/Corpus">000395</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000395</idno>
<idno type="wicri:Area/Main/Curation">000395</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000395</idno>
<idno type="wicri:Area/Main/Exploration">000395</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Data-driven modeling of COVID-19-Lessons learned.</title>
<author>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Mechanical Engineering, Stanford University, Stanford, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Extreme Mechanics Letters</title>
<idno type="ISSN">2352-4316</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Understanding the outbreak dynamics of COVID-19 through the lens of mathematical models is an elusive but significant goal. Within only half a year, the COVID-19 pandemic has resulted in more than 19 million reported cases across 188 countries with more than 700,000 deaths worldwide. Unlike any other disease in history, COVID-19 has generated an unprecedented volume of data, well documented, continuously updated, and broadly available to the general public. Yet, the precise role of mathematical modeling in providing quantitative insight into the COVID-19 pandemic remains a topic of ongoing debate. Here we discuss the lessons learned from six month of modeling COVID-19. We highlight the early success of classical models for infectious diseases and show why these models fail to predict the current outbreak dynamics of COVID-19. We illustrate how data-driven modeling can integrate classical epidemiology modeling and machine learning to infer critical disease parameters-in real time-from reported case data to make informed predictions and guide political decision making. We critically discuss questions that these models can and cannot answer and showcase controversial decisions around the early outbreak dynamics, outbreak control, and exit strategies. We anticipate that this summary will stimulate discussion within the modeling community and help provide guidelines for robust mathematical models to understand and manage the COVID-19 pandemic. EML webinar speakers, videos, and overviews are updated at https://imechanica.org/node/24098.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32837980</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">2352-4316</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>40</Volume>
<PubDate>
<Year>2020</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Extreme Mechanics Letters</Title>
<ISOAbbreviation>Extreme Mech Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>Data-driven modeling of COVID-19-Lessons learned.</ArticleTitle>
<Pagination>
<MedlinePgn>100921</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.eml.2020.100921</ELocationID>
<Abstract>
<AbstractText>Understanding the outbreak dynamics of COVID-19 through the lens of mathematical models is an elusive but significant goal. Within only half a year, the COVID-19 pandemic has resulted in more than 19 million reported cases across 188 countries with more than 700,000 deaths worldwide. Unlike any other disease in history, COVID-19 has generated an unprecedented volume of data, well documented, continuously updated, and broadly available to the general public. Yet, the precise role of mathematical modeling in providing quantitative insight into the COVID-19 pandemic remains a topic of ongoing debate. Here we discuss the lessons learned from six month of modeling COVID-19. We highlight the early success of classical models for infectious diseases and show why these models fail to predict the current outbreak dynamics of COVID-19. We illustrate how data-driven modeling can integrate classical epidemiology modeling and machine learning to infer critical disease parameters-in real time-from reported case data to make informed predictions and guide political decision making. We critically discuss questions that these models can and cannot answer and showcase controversial decisions around the early outbreak dynamics, outbreak control, and exit strategies. We anticipate that this summary will stimulate discussion within the modeling community and help provide guidelines for robust mathematical models to understand and manage the COVID-19 pandemic. EML webinar speakers, videos, and overviews are updated at https://imechanica.org/node/24098.</AbstractText>
<CopyrightInformation>© 2020 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kuhl</LastName>
<ForeName>Ellen</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 HL119578</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Extreme Mech Lett</MedlineTA>
<NlmUniqueID>101658429</NlmUniqueID>
<ISSNLinking>2352-4316</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Bayesian inference</Keyword>
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Data-driven modeling</Keyword>
<Keyword MajorTopicYN="N">Epidemiology</Keyword>
<Keyword MajorTopicYN="N">Extreme diffusion</Keyword>
<Keyword MajorTopicYN="N">Extreme growth</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>08</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32837980</ArticleId>
<ArticleId IdType="doi">10.1016/j.eml.2020.100921</ArticleId>
<ArticleId IdType="pii">S2352-4316(20)30178-4</ArticleId>
<ArticleId IdType="pii">100921</ArticleId>
<ArticleId IdType="pmc">PMC7427559</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Comput Methods Biomech Biomed Engin. 2020 Aug;23(11):710-717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32367739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Mech. 2020 Aug 13;:1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32836602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 May 15;368(6492):713-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32332062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Glob Health. 2020 Apr;8(4):e488-e496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32119825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Mech. 2020 Jul 31;:1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32836598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6146-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15071187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 May 1;368(6490):489-493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32179701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NPJ Digit Med. 2019 Nov 25;2:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31799423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Rev. 1993;15(2):265-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8174658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 26;382(13):1268-1269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Rep. 2020 Feb 24;12(1):8516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32201554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 2020 Mar 13;27(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32052846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CMAJ. 2020 Apr 14;192(15):E420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32392510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Mech. 2020 Aug 29;:1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32904431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2019 Feb 18;9(1):2216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30778107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomech Model Mechanobiol. 2020 Apr 27;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32342242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2020 Jul;26(7):1470-1477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32255761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2019 Jan;25(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30560777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Mech. 2020 Jul 28;:1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32836597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Methods Med Res. 1993;2(1):23-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8261248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Feb 26;215(4536):1053-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7063839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diagn Microbiol Infect Dis. 2020 Jul 21;98(3):115128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32777699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16092-16095</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32581126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 May;20(5):e102-e107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 27;367(6485):1436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32217720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Jul 23;383(4):303-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32412711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1919 May 30;49(1274):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17793800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2020 Apr 02;9:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32228860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2020 Jul;17(168):20200144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32693748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Apr 24;368(6489):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32144116</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
</settlement>
<orgName>
<li>Université Stanford</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000645 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000645 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32837980
   |texte=   Data-driven modeling of COVID-19-Lessons learned.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32837980" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021